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Abstract

Whereas early thermal models of honeycomb transparent insulation assumed the honeycomb to be bounded by

opaque plates on both faces, more recent models have allowed for an air gap between the honeycomb and one of the

plates: the ‘‘compound honeycomb’’ configuration. This paper deals with a new configuration, one that is basically the

compound honeycomb configuration, but the other bounding plate is diathermous (i.e., partly transparent to long-wave

radiation) rather than opaque. This new configuration has arisen in the application of honeycombs in greenhouses. This

paper extends the existing compound honeycomb model, by adding a new variable and a new equation. It was found

that a 9 · 9 matrix needs to be inverted rather than the 8· 8 required by the earlier formalism. To test the model, the

overall conductance across a set of transparent honeycombs resting on one of two diathermous plastics was measured,

using a guarded heater plate apparatus. The honeycombs were fabricated from UV-stabilized polypropylene, and had a

cell size of about 10 mm. Although the model tended to slightly over-predict the measurements (by about 10%) it is

considered to be accurate enough for design purposes.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Honeycomb transparent insulation has found appli-

cation in building insulation, in skylights, as well as in

solar collectors. A recent review of this and other

transparent insulations has been given by Hollands et al.

(2001). Heat transfer takes place through the honey-

comb by the coupled modes of radiation and conduc-

tion. (The honeycomb cell size is normally small enough

to eliminate any convective heat transfer.) Modeling the

thermal conductance of honeycombs formed the subject

of many early studies, in which the honeycomb was as-

sumed to be bounded solid opaque plates adjacent to

both faces. Hollands and Iynkaran (1984) suggested
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leaving an air-gap between one bounding surface and

the adjacent honeycomb face, forming what has come to

be known as the ‘‘compound honeycomb’’. (The pur-

pose of the air gap is to de-couple the radiative and

conductive modes near a low emissivity plate.) Platzer

(1992), Hollands and Iynkaran (1993) and Arulanan-

tham and Kaushika (1996) have presented more recent

thermal-conductance models.

Recently a new configuration has arisen in which one

of the bounding plates is not opaque, but is partly

transparent to long-wave radiation, and the purpose of

this paper is to describe a new thermal model aimed at

treating this new configuration. The configuration has

arisen from the use of honeycombs as an energy con-

servation measure in greenhouses. Here the honeycomb

rests on a horizontal plastic sheet that is partly trans-

parent to long-wave radiation, as in Fig. 1a. Below the

plastic sheet is the main part of the greenhouse where the

plants are grown. Above the honeycomb is the glass

gable-roof of the greenhouse.
ed.
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Nomenclature

D equivalent diameter for a honeycomb cell

[m]

hr hr ¼ eprðT 4
h � T 4

c ÞðTh � TcÞ�1

ht overall heat transfer coefficient from hot

plate to cold plate [Wm�2 K�1]

P P ¼ ðW1 þ b2Þ1=2
R R ¼ D=2 [m]

t equivalent thickness of honeycomb cell

‘‘demi-wall’’ [m]

W1 W1 ¼ 4ewrDðT 4
h � T 4

c Þk�1
e ðTh � TcÞ�1

W2 W2 ¼ W1epe�1
w

W 0 W 0 ¼ W1tD�1

Yx ðx ¼ c; h; pÞ, Yx ¼ T 4
x ðT 4

h � T 4
c Þ

�1

Greek symbols

j j ¼ qpðc� kÞc�1

k k ¼ 1� expð�2blÞ
u1, u2, u3 u1 ¼ expðPlÞ, u2 ¼ expð�PlÞ, u3 ¼

u1 � u2

l l ¼ 0:5LD�1

m1, m2 m1 ¼ l þ b�1, m2 ¼ �l þ b�1

r Stefan–Boltzmann’s constant

x1, x2 x1 ¼ bðP þ bÞ�1
, x2 ¼ bðP � bÞ�1

X1, X2, X3 X1 ¼ ð1� ehÞc�1,X2 ¼ ð1� ecÞc�1,X3 ¼
qpc

�1

Fig. 1. (a) Typical greenhouse configuration with honeycomb insulation; (b) double-compound honeycomb configuration used to

model the greenhouse situation in (a).

86 J.E.Y. Hum et al. / Solar Energy 76 (2004) 85–91
A model for this situation, as analyzed, is shown in

Fig. 1b. The partly transparent sheet is called here the

‘‘greenhouse plastic’’, although the application of model

is not restricted to greenhouses. When, as we have here,

the bounding plate is not opaque, the radiant properties

of the plate below it are also important, and one must

predict the overall thermal conductance from this lower

plate (the hot plate in Fig. 1b) to the upper plate (the

cold plate in Fig. 1b). Equations for the convective co-

efficients adjacent to the hot and cold plates are assumed

to be known. The procedure adopted for treating the

situation in Fig. 1b was to extend the Hollands and

Iynkaran (1993) analytical model by adding three new

variable––the temperature of the greenhouse plastic and

the radiosities on both sides––and three new equations.

After some relatively simple substitutions, this system is

reduced to 9 linear equations in 9 unknowns, and so a

9· 9 matrix needs to be inverted to complete the solu-

tion (in contrast to the 8 · 8 matrix inversion required in

the previous model).

To test the model, the overall conductance across a

set of transparent honeycombs resting on one of two

greenhouse plastics was measured, using a guarded heat

plate apparatus. The measured overall thermal conduc-

tances ranged from 2.2 to 3.1 Wm�2 K�1. The model
tended to slightly over-predict the measurements, the

difference being attributed to unavoidable edge effects in

the measurements and also the grey, specular assump-

tions in the model.
2. Modeling and analysis

2.1. Greenhouse model

As has been mentioned, the greenhouse shown in Fig.

1a was modeled as shown in Fig. 1b. The influence of the

solar radiation can be shown to be very small and is not

included in the analyses. The infinite hot plate at tem-

perature Th and emissivity eh, represents the inside of the
main greenhouse enclosure (plants, etc.), which will have

a relatively high emissivity, close to unity. Above and

parallel to it is the infinite cold plate at temperature Tc
and emissivity ec, representing the greenhouse roof,

which will also have an emissivity close to unity. These

hot and cold bounding plates are assumed to be diffusely

emitting and diffusely reflecting surfaces, which is con-

sidered appropriate for the greenhouse application. The

honeycomb insulation, of depth L, rests on the sheet of

greenhouse plastic, in the space between the hot and
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cold plates. Above and below the honeycomb are the air

gaps of heights Lu and Ll respectively, which are in free

convective motion. These layers are characterized by

convective heat transfer coefficients hl and hu in the

lower and upper gaps, respectively. Also playing im-

portant roles are the long-wave radiant properties of the

greenhouse plastic, which are its emissivity, ep, reflec-
tance, qp and transmittance, sp.

2.2. Honeycomb model

The honeycomb model of Hollands and Iynkaran

(1993) contained many simplifications and assumptions

which they justify on the basis of physical arguments

and the fact that the model predictions fit experimental

results. Except where noted, the same assumptions are

made here, without further justification. Thus the

analysis is based on a single circular honeycomb cell

(Fig. 2) having adiabatic, opaque, specularly reflecting,

gray, diffusely emitting (with emissivity ew), thin side-

walls that have thickness equal to one-half the actual

cell-wall thickness. The equivalent specular reflectance

qs of the honeycomb’s cell-wall is set equal to the sum

of the reflectance and transmittance of a sample of the

plastic sheet from which the honeycomb is fabricated; it

is therefore equal to 1� ew. Also, the air temperature

inside this idealized honeycomb cylindrical cell is a

function only of the axial co-ordinate z, and not of the

radial co-ordinate. It is further assumed that Th=Tc � 1,

where Th and Tc are absolute temperatures.

In contrast to Hollands and Iynkaran, who extended

the cell-walls surfaces on one side by hypothetical adia-

batic surfaces of 100% specular reflectivity, the cell-walls

in the present study are extended both top and bottom
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Fig. 2. Model of double-com
by similar hypothetical specular adiabatic surfaces, as

shown in Fig. 2. This is to accommodate the presence of

air volumes above and below the honeycomb in the

greenhouse situation.

2.3. Governing equations and their solution

The model is broken into three regions as shown in

Fig. 2: (i) the cell itself, for which �L=26 z6 L=2; (ii)
the upper gap, for which L=26 z6 L=2þ Lu; and (iii) the

lower gap, for which �ðL=2þ LlÞ6 z6 � L=2. The

governing equations are similar to those of Hollands

and Iynkaran (1993), but altered and extended to in-

corporate the greenhouse plastic. They are written in

terms of the five temperatures Ti and the five diffuse

radiosities Ji, with i ¼ w, h, c, p, pu and pl as follows: for

the cell side-wall, i ¼ w; for the hot plate, i ¼ h; for the

cold plate, i ¼ c; for the temperature of the greenhouse

plastic, i ¼ p; for the radiosity of the upper side of the

greenhouse plastic, i ¼ pu, and for the radiosity of the

lower side of the greenhouse plastic i ¼ pl. Also included

in the governing equations are the specular view factors

Fi�j, in which i and j are indices that can take on any of

w, h, c, pu and pl also, when either i or j is dw, the
reference here is to an elemental ring of height dz on the

cylinder, and when either i or j is dw0, the reference is to

an elemental ring of height dz0 on the cylinder. Other

symbols are defined in the nomenclature. The first five

governing equations are radiant balances each of the five

surfaces, as follows:

JwðzÞ ¼ ewrT 4
wðzÞ ð1Þ

Jh ¼ ehrT 4
h þ ð1� ehÞðJplFh�pÞ ð2Þ
p Plane of Honeycomb at Tt 

ld Plate at Tc  

t Plate at Th 

s 
lid 

iabatic Surface  

s 

s 

eenhouse Plastic at Tp 

pound honeycomb cell.
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Jc ¼ ecrT 4
c þ ð1� ecÞðJpuFc�pu þ Jw;cFc�wÞ ð3Þ
Jpu ¼ eprT 4
p þ spJh þ qp JcFpu�c

�
þ Jw;puFpu�w

�
ð4Þ
Jpl ¼ eprT 4
p þ qpJh þ sp JcFpu�c

�
þ Jw;puFpu�w

�
ð5Þ

where

Jw;i ¼
1

Fi�w

Z þL=2

�L=2
Jwðz0Þ

dFi�dw0 ðz0Þ
dz0

dz0 ð6Þ

Next, an expression for the energy balance at the wall

is derived by equating the net energy radiated out of the

interface with the net energy conducted into the inter-

face. After some re-arrangement, this gives

rT 4
wðzÞ � JplFw�pðzÞ � JcFw�cðzÞ � Jw;wðzÞFw�w

¼ keðRþ tÞ2

2ewR
d2Tw
dz2

ð7Þ

where ke is an effective thermal conductivity along the

honeycomb cell, defined in the same way as by Hollands

and Iynkaran, and

Jw;wðzÞ ¼
1

Fw�w

Z þL=2

�L=2
Jwðz0Þ

dFdw�dw0 ðz; z0Þ
dz0

dz0 ð8Þ

An energy balance on the greenhouse plastic sheet

gives

epð2rT 4
p � JhFp�h � JcFp�c � Jw;wFp�wÞ

¼ ke
dTwðzÞ
dz

� �
z¼ð�L=2Þ

þ hlðTh � TpÞ ð9Þ

where hl is the convective heat transfer coefficient across

the lower gap.

The layer of thickness Lu between the top of the

honeycomb and the cold plate contains convecting air.

We can conceptually replace this air with a stationary

gas layer of the same thickness, offering the same ther-

mal resistance. Making the thermal resistance the same

is achieved by giving the gas layer an apparent thermal

conductivity kg (different from the conductivity of air),

so as to give the appropriate thermal resistance, as ex-

plained later; thus kg ¼ huLu. With this replacement, the

third energy balance, written at the plane z ¼ L=2 gives

kg
dTgðzÞ
dz

� �
z¼L=2

¼ ke
dTwðzÞ
dz

� �
z¼L=2

ð10Þ

where TgðzÞ is the temperature distribution in the hy-

pothetical upper layer, which, since the upper layer is

stationary, must satisfy
dT 2
g ðzÞ
dz2

¼ 0 ð11Þ

In addition to these equations we must have cer-

tain boundary conditions satisfied, principally TgðL=2Þ ¼
TwðL=2Þ and TgðL=2þ LuÞ ¼ Tc. Appropriate expressions

for the specular view factors, assuming the exponential

kernel approximation are given by Hollands and Iynk-

aran (1993). We give here only the expression for

dFdw�dw0 ðz; z0Þ:

dFdw�dw0 ðz; z0Þ ¼ ðc=DÞ � expð�bðz� z0Þ=DÞdz0 ð12Þ

where parameters b and c can be expressed in terms ew of

the ratio L=D: b ¼ bðew; L=DÞ and c ¼ cðew; L=DÞ, the

necessary expressions having been given by Hollands

et al. (1984). Expressions for the other specular

view factor can be derived from Eq. (12), using flux al-

gebra. Details are given by Hollands et al. (1984) and

Youngberg (2000).

To commence the solution of this set of equations,

one starts by substituting Eq. (4) for Jpu into Eqs. (3)

and (5) for Jpl into Eq. (7), and then dropping Eqs. (4)

and (5) from the set. The number of equations is

thereby reduced by two, as is the number of variables,

since Jpu and Jpl are thereby eliminated. Compared to

the system of equations in the treatment by Hollands

and Iynkaran (1993), the present set has one more

variable, namely the temperature of the greenhouse

plastic, Tp and one more equation, namely Eq. (9).

Other than this the equations are very similar and their

solution procedure can be readily extended to the pre-

sent case. Thus we do not give details; we simply give a

summary. Interested readers are referred to Youngberg

(2000) for the details.

First the system of equations is de-dimensionalized,

in the process introducing the dimensionless counterpart

of Tp, which is defined as c7 ¼ ðT 4
p � T 4

c Þ=ðT 4
h � T 4

c Þ. At

the same time the meaning of c7 and c8 in the Hollands

and Iynkaran treatment is changed to that of c8 and c9 in
the present treatment. All other cs have the same

meaning as they had in that earlier study. Upon fol-

lowing the same steps as in the Hollands and Iynkaran

treatment, the problem is reduced to finding the solution

to the matrix equation:

U � C ¼ V ð13Þ

where C is the column vector with elements ðc1; c2;
c3; . . . ; c8; c9Þ, U is a 9 · 9 matrix and V is a 9-element

column vector. U and V are functions of the parameters

of the problem, which are Th, Tc, the radiant properties,
D, L, t, Lu, ke, kg, hl, and the exponential kernel fitting

parameter b and c. The elements uij of U and vi of vector
V are either equal to zero or given in terms of these

parameters, as follows:
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u11 ¼ 1; u12 ¼ m1; u13 ¼ �x2u1;

u14 ¼ x1u2; u16 ¼ �1; u21 ¼ ð1� X3kÞ;
u22 ¼ ð�m1X3ðm1k � 2lÞÞ;
u23 ¼ ðx1u2 � X3x2ðu3ku1ÞÞ;
u24 ¼ ð�x2u1 � X3x1ðu3 þ ku2ÞÞ;
u25 ¼ �sp; u26 ¼ �X3ðc� kÞ; u27 ¼ �ep;

u31 ¼ 1; u32 ¼ �l; u33 ¼ u2; u34 ¼ u1;

u37 ¼ �1; u41 ¼ 1; u42 ¼ l; u43 ¼ u1;

u44 ¼ u2; u48 ¼ �1; u49 ¼ �l; u58 ¼ 1;

u59 ¼ ðLu=Dþ lÞ; u61 ¼ ðspkX1Þ;
u62 ¼ ðspX1ðm1k � 2lÞÞ; u63 ¼ ðX1x2spðu3 � ku1ÞÞ;
u64 ¼ ðX1x1spðu3 þ ku2ÞÞ; u65 ¼ ðð1� ehÞqp � 1Þ;
u66 ¼ ðX1spðc� kÞÞ; u67 ¼ ðð1� ehÞepÞ;
u71 ¼ ðkX2ðj þ 1ÞÞ; u72 ¼ ðX2ðm1k � 2lÞðj � 1ÞÞ;
u73 ¼ ðX2ðjx2ðu3 � ku1Þ þ x1ðu3 þ ku2ÞÞÞ;
u74 ¼ ðX2ðjx1ðu3 þ ku2Þ þ x2ðu3 � ku1ÞÞÞ;
u75 ¼ ðX2spðc� kÞÞ; u76 ¼ ð�1þ X2jðc� kÞÞ;
u77 ¼ ðX2epðc� kÞÞ; u81 ¼ ð�k=cÞ;
u82 ¼ ð�ð1=cÞðm1k � 2lÞ � ðke=ðhrDÞÞÞ;
u83 ¼ ðð�x2=cÞðu3 � ku1Þ � ðkePu2Þ=ðhrDÞÞ;
u84 ¼ ðð�x1=cÞðu3 þ ku2Þ þ ðkePu1Þ=ðhrDÞÞ;
u85 ¼ �1; u86 ¼ �ðc� kÞ=c; u87 ¼ ð2þ hlhrÞ;
u91W 0; u92 ¼ ð1þ W 0lÞ; u93 ¼ ðW 0 þ Pu1Þ;
u94 ¼ ðW 0 � P Þu2; u96 ¼ �W 0; u99 ¼ �ðhuLukeÞ;
v1 ¼ �Yc; v2 ¼ Ycðep � 1þ X3kÞ;
v6 ¼ �ehYh � ð1� ehÞepYc � spkX1Yc;

v7 ¼ �YcðecX2epðc� kÞ þ X2kðj þ 1ÞÞ;
v8 ¼ �2YcYck=chlhr; v9 ¼ �W 0Yc ð14Þ

These expressions contain some new quantities (such as

k, W etc.). These are defined in the nomenclature.
2.4. Obtaining the heat transfer

Eq. (13) can be solved by standard matrix inversion

algorithms, once the parameters have all be determined.

But two of the parameters are unknown at the beginning

of the solution procedure: hl and kg ¼ huLu, since these

convective coefficients are functions of the temperatures

bounding the two layers. While two of these tempera-

tures, Th and Tc are known from the start, Tp and

TwðL=2Þ are not. Consequently, a trial and error itera-

tion must be entered into: in the first step Tp and TwðL=2Þ
are guessed; then (step 2) hl and kg are calculated, per-

mitting the determination of U and V. Then is deter-

mined through matrix inversion. This permits the

determination of new values of Tp and TwðL=2Þ. These
latter values provide improved guesses for returning to

the step 2 for the next iteration. The process is repeated
until Tp and TwðL=2Þ change by less than some small

amount––like 0.001 K––from one iteration to the next.

Once a solution for C is found, the total heat transfer

coefficient, ht ¼ q=ðTh � TcÞ, where q is the heat flux

carried from the hot plate to the cold plate, can be found

by evaluating the heat flux at the hot plate, yielding

ht ¼ hlð1� c7Þ þ
ehr

1� eh
�
T 4
h � c5 T 4

h � T 4
c

� �
Th � Tc

ð15Þ

The heat transfer coefficients hl and hu are deter-

mined from the appropriate equation for the heat

transfer across a gas layer heated from below. In this

study, the equation due to Hollands et al. (1976) was

applied.

To test its consistency, the model was compared to

the model of Hollands and Iynkaran (1993) in predic-

tions of the heat transfer across regular and compound

honeycombs. As expected, since the basis of the models

is the same, the predictions were essentially the same

(i.e., the same to within 0.05%).
3. Experiment

3.1. Overview

To test the model, values of ht were measured on a set

of honeycombs, and the results compared to the pre-

dictions of the model. The nine honeycombs tested were

provided by Advanced Glazings Ltd., Sydney, Nova

Scotia. These test honeycombs all had nominally square

cells of nominal size 10· 10 mm and all were made of

UV-stabilized polypropylene. They had, on the other

hand, varying depths, L, and wall thickness 2t. There
were three thicknesses: 2t ¼ 25, 51, and 76 lm, respec-

tively; and three depths: L ¼ 45, 64, and 76 mm, re-

spectively, and the nine honeycomb samples included all

possible combinations of L and t. Each of these honey-

combs was tested while resting on one of two greenhouse

polyethylene sheets, both sheets having been especially

designed for use in greenhouses. One sheet was ‘‘stan-

dard stock’’ and the other had been treated to give it a

higher emissivity, enhancing its ability to shield radia-

tion from the greenhouse floor. Of the 18 available

combinations of honeycomb and greenhouse plastic, a

subset of nine was chosen for the measurements.

3.2. Radiant properties of honeycomb film and greenhouse

plastic

The thermal properties of the honeycomb film and

greenhouse plastic film needed to be determined for in-

put into the model. The method used was that described

in Hollands et al. (1984). Thus, an infrared reflectometer

(Gier-Dunkle DB100) was used to measure the infrared

reflectance of the film with the black reference behind it.



Table 1

Hemispheric Radiant Properties of Films Used in Experiments

qw or qp sw or sp ew or ep

25 lm polypropylene

honeycomb wall

0.129 0.807 0.063

51 lm polypropylene

honeycomb wall

0.131 0.770 0.100

76 lm polypropylene

honeycomb wall

0.132 0.726 0.142

Regular greenhouse

plastic sheet

0.099 0.613 0.288

High-e greenhouse plastic

sheet

0.150 0.376 0.474
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Then this measurement was repeated with the gold ref-

erence behind the film. The infrared reflectance and

transmittance of the film itself were then calculated from

these values, using equations given by Hollands et al.

These measured values were the normal values––i.e.,

those for the incident radiation perpendicular to the

film. These values were converted to their hemispherical

counterparts, using a theoretical model similar to that of

Hollands and Wright (1983). The results are shown in

Table 1.
3.3. Heat transfer measurements

The heat transfer experiments were carried out using

the Guarded Heater Plate Apparatus (GHPA), built

originally for basic natural convection studies (El-

Shirbiny et al., 1982) and later for window studies

(Wright and Sullivan, 1988). In the present work, this

apparatus was adapted to measure the total heat

transfer coefficient, ht, across the double compound

honeycomb configuration shown in Fig. 1b. The

GHPA has two parallel main copper plates, one hot

and one cold, which were kept horizontal in the

present experiments. The hot plate has a set of central

guarded heater plates imbedded in it. A support frame

keeps the items in place. The maximum attainable plate

spacing available on the GHPA was 450 mm. The

temperature of each of the 635 · 635 · 12.7 mm (25·
25· 0.5 in.) main copper plates is independently con-

trolled. A temperature-regulated water–glycol solution

flows through a manifold soldered to the back face of

each plate. Heat transfer measurements are made pos-

sible through the use of the guarded heater plate setup,

which contained a heat flux mater as well as an elec-

trically heated copper plate. Additional instrumentation

included a thermocouple to measure the temperature of

the hot plate and six thermocouples connected in series

(forming a thermopile) to measure the temperature

difference across the plates.

The apparatus was configured to represent the

model shown in Fig. 1b, as closely as possible. The
faces of the main copper plates were painted black to

achieve a measured plate emissivity of 0.96± 0.005.

Supporting the cold plate and also forming the

side-walls of the testing enclosure were reflective foil-

covered sections of 25 mm thick polystyrene foam in-

sulating boards. The enclosure was sealed and enclosed

with fibreglass to minimize air infiltration and heat loss

to the environment. The honeycomb samples were

mounted in a foil-wrapped frame and rested on a taut

piece of greenhouse plastic. The lower plate tempera-

ture was set to 20 �C and the upper at 0 �C for all the

measurements. The gaps above and below the honey-

comb were set so as to make Lu and Ll both equal to

170 mm. These settings achieved the highest Rayleigh

numbers possible for the rig without introducing sig-

nificant edge effects in the radiative and convective heat

transfer modes. The calculated Rayleigh numbers in the

gaps ranged from 1.5· 106 to 4· 106; in this range, hu
and hl are very nearly independent of the gap-spacings.

Thus, although the gap-spacings in the experiment were

much smaller than those in the greenhouse, the exper-

imental heat transfer coefficients will nonetheless be

quite representative of those experienced in a green-

house.

The temperature baths were run for about 2 h until

the plates reached steady-state temperatures. After each

adjustment to the input voltage of the resistance heater,

the apparatus was left for about 30 min to allow it to

reach a new steady state. Steady-state voltages from the

heat flux meter were recorded for each resistance heater

input value. These adjustments and readings continued

until the heat flux meter was as close as possible to a

zero reading. An error analysis showed that the random

error was ±0.07 Wm�2 K�1 and the bias error was 0.33

Wm�2 K�1. The main contributor to the bias error was

the edge effects having to do with the fact that the plates

were of a finite size and did not achieve the infinite size

assumed in the model.

Plotted in Fig. 3, the measured values of ht were

found to range from 2.48 to 3.13 Wm�2 K�1 for the

honeycombs resting on the regular greenhouse plastic

and from 2.19 to 2.72 Wm�2 K�1 for the honeycombs

resting on the low-emissivity greenhouse plastic. There is

a definite and consistent trend in the data toward lower

values of ht when L is increased, or t is increased, or both
are increased.
4. Comparison of model and measurements

Fig. 3 shows a plot of all the results by plotting the

value of ht predicted by the model against the measured

value. The model is seen to consistently over-predict

the measured results, as the predicted results range

from 7.3% to 16.3% above the measured results. Some

of this error can be attributed to the side-effects, i.e.,
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Fig. 3. Comparison between model predictions and experimental results.
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the finite horizontal extent of the cavities above and

below the honeycomb. Another likely source of error is

the assumption that the honeycomb cell walls reflected

and transmitted long-wave radiation in a specular

manner. This assumption would result in the actual

heat transfer being under-predicted by the model, as

was observed. The smallest relative errors were ob-

served in runs with the high emissivity greenhouse

plastic. This trend may indicate that high emissivity

greenhouse plastic conformed more closely than the

regular greenhouse plastic to the assumption of a dif-

fuse plastic sheet. Also a possible contributor is the

estimation of hu, which was estimated from a correla-

tion equation that was based on solid boundaries for

the air layer, whereas the actual boundary is the face of

a honeycomb.
5. Conclusions

While not fully predictive, the model is considered to

be accurate enough for design purposes. With the model

at hand, the suitability of various combinations of

greenhouse plastic and honeycomb designs can be as-

sessed. It should be noted that the model predicts a heat

transfer coefficient of 4.25 Wm�2 K�1 when there is no

honeycomb present and the regular greenhouse plastic is

used and 3.65 Wm�2 K�1 when there is no honeycomb

present and the high-emissivity greenhouse plastic is

used. This means the reduction in the overall heat

transfer coefficient afforded by adding the present design

of honeycomb ranges up to 39% reductions.
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